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A B S T R A C T   

While the average value measurement approach can successfully analyze and predict the general behavior and 
biophysical properties of an isogenic cell population, it fails when significant differences among individual cells 
are generated in the population by intracellular changes such as the cell cycle, or different cellular responses to 
certain stimuli. Detecting such single-cell differences in a cell population has remained elusive. Here, we describe 
an easy-to-implement and generalizable platform that measures the dielectrophoretic cross-over frequency of 
individual cells by decreasing measurement noise with a stochastic method and computing ensemble average 
statistics. This platform enables multiple, real-time, label-free detection of individual cells with significant 
dielectric variations over time within an isogenic cell population. Using a stochastic method in combination with 
the platform, we distinguished cell subpopulations from a mixture of drug-untreated and -treated isogenic cells. 
Furthermore, we demonstrate that our platform can identify drug-treated isogenic cells with different recovery 
rates.   

1. Introduction 

Most cellular research measures average values among cells in a 
population to successfully analyze and predict the general behaviors and 
properties of that population [1]. However, that approach sometimes 
fails, particularly when significant differences occur among individual 
cells within a single isogenic cell population. Such significant differences 

among individual cells can originate from intracellular changes such as 
differences in cell cycles, different cellular responses to certain stimuli, 
or even uncontrolled microenvironments around cells, and they make it 
challenging to explain the behaviors and properties of a cell population 
using only average values [1–4]. Cellular diversity that originates from 
intrinsic changes in individual cells can create subpopulations in an 
isogenic cell population. For example, individual cancer cells in an 
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isogenic population can respond differently anticancer drugs. 
Non-genetic adaptation to an anticancer drug can make an initially 
homogenous drug-treated cancer cell population heterogeneous, 
allowing subpopulations to emerge [5,6]. As another example of sub-
population growth in an isogenic cell population as a result of different 
responses to the surrounding microenvironment, cancer cells able to 
undergo metastasis or immune evasion can appear in an isogenic tumor 
cell population that is initially incapable of either behavior [7]. 

Therefore, analyzing cellular properties and behaviors at the sub-
population level, rather than the whole population level, would be a 
better way to examine cellular responses to certain external stimuli. 
Distinguishing subpopulations within an isogenic cell population re-
quires that the biological noise and systemic measurement noise 
generated during measurement procedures be minimized to ensure the 
generation of statistically reliable data. In general, experiments are 
repeated at the macro-scale level to reduce such noise and improve the 
precision of the values measured in various cell experiments. However, 
it is difficult to simultaneously observe individual cell behaviors in the 
exact same microenvironmental conditions, which is essentially for the 
study of subpopulations within an isogenic cell population, in repeated 
macro-scale experiments. 

In recent years, micro/nano-techniques for examining cellular 
characteristics inside a microfluidic device have advanced rapidly. 
These techniques can simultaneously probe the behaviors of individual 
cells in the same environmental conditions, producing the reliable and 
robust data needed to investigate the biophysical properties of cells. 
Optical [8], dielectrophoretic [9–11], magnetic [12], acoustic [13,14], 
and hydrodynamic [15] techniques are examples of such methods. 
These manipulation techniques take advantage of the gradient force in 
an external field, which induces particle motion based on force differ-
ences at the particle interface in response to the external field. Initially, 
they were mainly used to improve the efficiency of conventional mo-
lecular biomarker-based biochemical analysis as a single-cell trapping 
and separation techniques [8,9,12–16]. More recently, their importance 
has grown as various biophysical characteristics have been shown to 
serve as an additional phenotypic biomarker for distinguishing cell 
heterogeneity at the cellular level [17]. Biophysical biomarkers such as 
cell morphology (including size and membrane roughness), cell mass, 
stiffness, mean square displacement, deformability, and cytoplasmic 
conductivity have been identified. Using both/either biochemical 
and/or biophysical biomarkers, these micro/nano techniques have been 
successfully applied to discriminate cell heterogeneity between different 
types of stem cells, white blood cells, red blood cells, and cancer cell 
populations [18–29]. Among them, the dielectrophoretic (DEP) tech-
nique, in which a single cell is placed on an isolated trap inside a 
microfluidic device, has come into the spotlight because it is label free 
and can manipulate and investigate the dielectric properties of 
numerous individual cells at once [30,31]. Probing cancer cells in a 
mixture sample with normal cells and blood cells [32], differentiating 
cell lineages [33,34], and detecting leukocyte activation [35] are 
excellent examples of manipulating numerous individual cells while 
investigating each cell’s dielectric properties. 

Therefore, the DEP technique seems to provide a great opportunity to 
detect and distinguish cell subpopulations within an isogenic cell pop-
ulation. However, DEP-based measurement techniques produce a 
snapshot observation of each cell’s DEP behavior at a discrete time; they 
do not track the DEP behaviors of numerous individual cells over time 
[30,36]. Therefore, we recently developed a DEP-based method for 
tracking numerous individual cells simultaneously and performing 
multiple measurements of each cell’s DEP behavior over time [37]. This 
method is very promising for distinguishing and characterizing sub-
populations in an isogenic cell population because the developed DEP 
techniques can obtain more reliable data than previous methods while 
tracking numerous individual cells through time. 

In this study, we report a stochastic approach that uses an ensemble 
average of multiple measurements obtained using our new DEP 

technique to distinguish cellular subpopulations that originate from an 
isogenic cell population. To verify the stochastic approach, we first 
examined whether our platform can distinguish two different sub-
populations (untreated and methyl-β-cyclodextrin (MβCD)-treated MCF- 
7 cells) mixed in a population. The model mixture of untreated and 
MβCD-treated MCF-7 cells was discriminated using the ensemble 
average based on the less than 5 % overlap of two distributions, which 
was calculated from multiple measurements of individual cells’ DEP 
cross-over frequencies. Furthermore, we differentiated subpopulations 
formed during the recovery of cellular changes generated by exposure to 
MβCD. Those results indicate that our stochastic approach using the 
ensemble average of multiple measurements can discriminate cell sub-
populations from a mixture in real-time without further isolation of the 
subpopulations. 

2. Materials and Methods 

2.1. Materials and reagents 

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum 
(FBS), penicillin-streptomycin, 0.25 % trypsin-EDTA, and phosphate- 
buffered saline (PBS; × 1) were purchased from Gibco (Gaithersburg, 
MD, USA). D-glucose and sucrose were purchased from Bio Basic Inc. 
(Markham, ON, Canada). Bovine serum albumin (BSA) was purchased 
from Bovogen Biologicals (Essendon, VIC, Australia). Plasmocin Pro-
phylactic (0.2 %) was purchased from InvivoGen (San Diego, CA, USA). 
MβCD powder was purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Deionized water was supplied by a purification system from Sartorius 
AG (Gottingen, Germany). Silicon dioxide wafers were purchased from i- 
Nexus (Seongnam, Republic of Korea), and polydimethylsiloxane 
(PDMS, Sylgard 184) agents and silicone elastomer curing agent were 
purchased from Dow Corning (Midland, MI, USA). Cover glasses were 
purchased from Marienfeld (Lauda-Königshofen, Germany). 

2.2. Cell preparation 

MCF-7 human breast cancer cells (ATCC, Manassas, VA, USA) were 
incubated in DMEM supplemented with 10 % FBS, 1 % penicillin- 
streptomycin, and 0.2 % Plasmocin Prophylactic at 37 ◦C in a humidi-
fied atmosphere with 5 % CO2. For the DEP experiments, MCF-7 cells 
were seeded into six-well plates at 2 × 105 cells/well in the same buffer 
solution and cultivated for 48 h. After that, the cells were incubated in 
serum-free DMEM buffer with/without MβCD agents using the condi-
tions described below. Then the cells were harvested using 0.25 % 
trypsin/EDTA solution and exchanged into DEP buffer solution con-
taining 8.6 % (w/w) sucrose, 0.3 % (w/w) D-glucose, 0.20 % (v/v) PBS 
buffer, and 1.0 mg/mL BSA. 

2.3. MβCD treatment conditions 

We prepared a stock solution of 37.87 mM C4555 MβCD in a distilled 
water, divided it into small aliquots, and stored them at 4 ◦C before the 
DEP experiments. Next, we diluted the stock solution with serum-free 
DMEM buffer to a 10 mM solution of MβCD. This MβCD solution was 
administered to MCF-7 cells on a plate for 2 h and then exchanged with 
fresh serum-free DMEM buffer. After that, the treated cells were tryp-
sinized for the DEP experiment. In the recovery experiment, the serum- 
free DMEM buffer containing MβCD was removed after 2 h of MβCD 
treatment, and fresh serum-free DMEM buffer without MβCD was added 
in a culture dish. After a 24-h incubation, the cells were trypsinized as in 
the DEP experiment. 

2.4. DEP chip preparation 

For the DEP-based cell assay, we fabricate microfluidic microelec-
trode array chips as shown in Fig. 1A, each composed of a DEP electrode 
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and a microfluidic chamber. Briefly, the DEP electrode was designed and 
fabricated in a 30-pair of interdigitated electrode array (30-μm wide 
chromium electrode fingers with 10-μm spacing and 0.1-μm thickness) 
on a silicon dioxide wafer, and then an insulator layer (0.8 μm of silicon 
dioxide) was deposited using a standard microfabrication technique [9]. 
Subsequently, the contact pad portions and circular hole array of the 
electrode array were etched in optimized wet-etching conditions. To 

observe the behavior of living cells on the DEP electrode, a PDMS 
chamber with 6-μl capacity was put into contact with the DEP electrode 
surface. A more detailed procedure is provided in our previous report 
[11]. 

Fig. 1. Setup of the operation system for the proposed DEP platform. (A) The photograph of the fabricated chip consisting of 30 pairs of interdigitated electrode array 
and two contact electrode pads. (B) The electrical signals are applied to the contact pad through a micromanipulator connected to a 1 μm-diameter tungsten 
probe tip. 

Fig. 2. Preparation process for the observation of DEP-induced cell mobility on our proposed platform. A detached cell sample is injected into the cleaned chip 
preparation for a DEP experiment (i-iv). The CCD camera recorded the DEP force-induced cell movement, which consists of the seven times repeated AC frequency 
and voltage change. 

S. Choi et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 170 (2024) 108011

4

2.5. Platform operation 

Our DEP signal modulation represents the variation of magnitude 
and direction of the DEP force controlled by AC frequency. The AC 
voltage is constant with 2 Vpeak-peak as the AC frequency changes (see 
lower-right inset of in Fig. 2). after the AC frequency is changed, the AC 
voltage was turned off for 1 min to minimize electrical cell damage. An 
AC signal was applied to two contact pads on the chip using a custom 
probe station (Modusystems, Inc., Hanam, Republic of Korea) that was 
connected to a modified automated DEP system. The system consisted of 
a control module, an observation module, and a signal generation 
module (Fig. 1B). The observation module consisted of a Wavesurfer 432 
oscilloscope (Teledyne Lecroy Corp., Chestnut Ridge, NY, USA) and a 
Motionscope M3 digital camera (Redlake, San Diego, CA) and was 
connected to a PS-888 optical microscope (Seiwa Optical, Tokyo, 
Japan). The signal generation module consisted of an NI PCI-5421 PCI 
board (National Instrument, Austin, TX, USA). The control module ran 
LabVIEW software (National Instruments, Austin, TX, USA) to syn-
chronize the signal generation and observation modules. The software 
controlled the input AC voltage and frequency (the lower-right inset of 
Fig. 2) through an arbitrary function generator. The input voltage 
amplitude and frequency were monitored by the oscilloscope. During 
modulation of the DEP signals, cell movements were recorded on a 
charge-coupled device camera that was connected to the control mod-
ule. The detailed operation procedure is described in our previous report 
[38]. 

2.6. Data analysis 

The DEP data (DEP cross-over frequency (fco) and cell radius (rcell)) 
were analyzed using custom MATLAB codes to segment and track the 
cells of interest [37]. For all samples, the only cells we used as subjects 
were fully tracked during DEP signal modulation and trapped on the 
circular holes at the trapping frequency (AC 41 kHz). The acquired fco 
data were sorted into three method groups (single, multiple, and 
average). The detailed data processing method is described in Materials 
and Methods 2.7 and Fig. 3. Cell radii were measured in the condition in 
which most cells were trapped by a constant DEP force at an identical 
input frequency. The DEP cross-over frequency was determined by 
estimating the border frequency between trapped and released cell 
mobility using the transition of DEP force [11]. The coefficient of vari-
ation (CV) for each dataset was calculated by dividing the standard 
deviation for the examined cells by the mean (i.e., CV = standard de-
viation of a population/mean of a population). Regarding our CV com-
parison calculation, we used a relative percentage procedure (e.g., 

[CVmultiple-CVaverage]/CVmultiple × 100 in comparison of CV with multi-
ple and ensemble average method. We examined the Pearson correlation 
coefficient using Origin software to investigate the cell radius and DEP 
fco. The Gaussian mixture model (GMM) method used to classify sub-
populations was conducted using MATLAB library functions. In the drug 
recovery experiments, the optimum number of subpopulations was 
determined using Bayesian information criterion scores, bounded by 1–5 
(see Fig. S5). Details related to our statistical analysis are provided in 
Supplementary Method S1. 

2.7. Data processing for DEP-induced cell mobility measurement 

We categorized DEP data from individual cells, which we obtained 
during the 7-cycle DEP signal modulation including AC Voltage and AC 
frequency, as shown in Fig. 2, to validate three measurement methods 
that all use the cell DEP properties of fco and rcell. First, we classified DEP 
data for a single cell via a MATLAB interface that uses a cell labeling 
procedure with an optimized single cell tracking analysis [37]. The data 
from single DEP measurements were selected in the first cycle of DEP 
signal modulation to reflect the procedure generally used in DEP ex-
periments (light blue box in Fig. 3). Given that the total number of cells 
is i cells, and the total number of measurements is N cycles, we define the 
set of cell DEP data ({χi}) involving fco and rcell as follows:  

{χi}Method = {χ1, χ2, …, χi}N |{(fco)i}∈{χi}, {(rcell)i}∈{χi}                     (1) 

Because a single measurement occurs when N is 1, the dataset for 
single measurements ({χi}single) can be represented as follows:  

{χi}Single = {χ1, χ2, …, χi}N = 1                                                         (2) 

All the DEP data obtained during seven signal modulation cycles 
were used for the multiple DEP measurement datasets (orange box in 
Fig. 3). Our experiments used 7 cycles (i.e., N = 7). Therefore, the 
multiple measurement dataset ({χi}multiple) can be represented as 
follows:  

{χi}Multiple = {χ1, χ2, …, χi}N = 1:7                                                     (3) 

Finally, the sum of those values was averaged as an ensemble 
average using the seven cycles for each cell in each experimental con-
dition (purple box in Fig. 3). The dataset for i cells calculated with the 
ensemble average method ({χi}Average) can be represented as follows: 

{χi}Average =

⎧
⎪⎪⎨

⎪⎪⎩

∑7

N=1
(χ1)N

7
,

∑7

N=1
(χ2)N

7
,…,

∑7

N=1
(χi)N

7

⎫
⎪⎪⎬

⎪⎪⎭

(4) 

Fig. 3. Schematic presentation of the calculation process for DEP cross-over frequency (fco) and cell radius (rcell) data for three methods of measuring DEP-induced 
cell mobility. 
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To use the ensemble average method, we assumed that the cell DEP 
property was almost invariant during 7-cycles, which is supported in our 
previous report [37], and that the statistical analysis would only be used 
within a single population (see the revised Supporting Method S1 and 
the revised Fig. S4). 

3. Results and discussion 

3.1. Measurement platform for identifying heterogeneity within an 
isogenic population 

A brief workflow for the measurement of single-cell DEP behavior on 
our platform is shown in Figs. 2–4. As shown in Fig. 2, cancer cells were 
injected into the microfluidic chamber and moved under DEP force. Cell 
translocation was recorded using a microscope camera system. The 
microelectrode array with cell-sized circular holes in the microfluidic 
chamber enabled manipulation at the single cell level, so that each cell 
was separated and placed on an individual circular hole, and then its 

movement was controlled in a parallel manner [9–11,37,39]. As shown 
in Fig. 4A, a randomly distributed individual cell was captured on each 
circular hole, released from the hole, and re-captured between two holes 
as positive and negative DEP forces (pDEP and nDEP forces) were 
exploited by DEP frequency modulation. Such movement experiments 
were repeated for 7 cycles while tracking the same individual cells in the 
exact same environment. Each cell’s DEP movement data, which were 
obtained while tracking them for 7 cycles, were used to determine the 
effective DEP cross-over frequency (i.e., fco at DEP force ≈ 0) and radius 
(r) of each individual cell. The fco and r datasets were then used for the 
stochastic examination of each individual cell, as shown in Figs. 3 and 
4B. The figure summarizes how we used multiple measurements from 
tracking single cells to calculate an ensemble average. 

The results of cellular fco and r after applying the individual cell 
tracking method are plotted in Fig. 5A–C. MCF-7 cells (breast cancer cell 
line) were used to evaluate the developed platform. The dataset of 
cellular fco and r values measured as single measurements are shown in 
Fig. 5. In this case, it was not necessary to track each individual cell. 

Fig. 4. Process for measuring the DEP behavior of individual cells. (A) Process of fco determination in the sequential DEP process (see Materials and Methods for 
details). Time-lapse images show the translational movement of one cell during sequential AC frequency modulation (see Fig. 2 for details). Scale bar, 20 μm (B) 
Schematic representation of the per-cell DEP statistical method after obtaining ensemble fco and r data by tracking each cell for 7 cycles (see Materials and Methods 
2.7 and Fig. 3 for details). Σ/N represents the summation of all DEP mobility data from 7 cycles per cell divided by the number of final cycles (i.e., N = 7). 
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Fig. 5B represents multiple measurements (7 cycles) from each indi-
vidual cell for the whole dataset of cellular fco and r values. The 
ensemble average dataset was produced using multiple measurements 
from each individual cell and the stochastic approach described in 
Fig. 4B is presented in Fig. 5C. The reliability and precision of the three 
different datasets are shown in Fig. 5D and E. The mean r and fco values 
obtained from whole population are almost identical in the three data-
sets (left bars in Fig. 5D and E) and similar to the values reported in the 
literature [11,40–45], as we expected (Fig. S2). However, the CV of each 
dataset, which represents the quality of a dataset measured using a 
particular assay system [46], decreased dramatically when using the 
stochastic approach with the ensemble average extracted from multiple 
measurements for each individual cell. The right bars in Fig. 5D and E 
shows a relative improvement of fco and rcell in CVaverage of 15 %–40 % 
than CVmultiple, respectively. Therefore, our platform effectively reduces 
the measurement instrumentation and random noise while providing 
more precise and reliable ensemble averages calculated from multiple 
measurements for each individual cell. 

Our proposed method, called the ensemble average method, effec-
tively reduces the width of the two-dimensional cell distribution using 
the DEP parameters fco and rcell compared to the single and multiple 
methods. This allows for better discrimination of heterogeneous samples 
containing multiple subpopulations. The key factor behind this differ-
ence lies in our per-cell DEP statistical approach. First, the fundamental 
difference in the DEP parameters obtained from single and multiple 
measurements is due to the amount of data. Typically, the coefficient of 
variation (CV) value in repeated experiments on the same sample (cells 
in our case) should decrease as the number of replicates increases. This is 
because replicates help to reduce the variability of the data [47]. 
However, we did not observe this trend in our experiment when the data 
were not sorted by individual cells. On the other hand, the main dif-
ference between the multiple and ensemble averaging methods lies in 

the averaging procedure and how the data obtained for each cell are 
treated. In both the multiple measurement method and the ensemble 
average method, we used the same number of cells to calculate the CV 
parameter. To investigate the difference in CV between the three mea-
surement methods, we also considered the number of experimental 
replicates. Fig. S3 shows the distributions of CVs for the replicate cycles 
in the three developed methods. Contrary to our expectations, we 
observed a slight increase (without MβCD) or decrease (with MβCD) in 
the CV values for both single and multiple measurement methods as the 
number of cycles increased. Although our experimental conditions, such 
as the applied electric field strength and the low-conductivity medium, 
are not critical for cell viability, with a survival rate of approximately 90 
% in the trypan blue test before and after the DEP experiment, it appears 
that cells in these environments adapt to survive during the experiments. 
This adaptation likely influences our DEP fco and rcell parameters. 
However, in the ensemble average method, the CV decreased as a 
function of the DEP signal cycle. By fitting the data to an exponential 
equation (y = y0+A × EXP(R0 × x), we identified the saturation of the 
CV trend compared to the saturation value (i.e., y0), as shown by the 
gray dashed line and the short dashed line in Fig. S3. This difference can 
be attributed to the process by which the effect of outliers is reduced 
through averaging data from multiple measurements of the same cells, 
thereby representing the variation of the time-averaged cell data. In 
summary, the observed instability in our platform contributes to these 
findings, rather than a dynamically variable property of the cell. We 
believed that the improvement in CV was due to a difference in data 
preprocessing from the statistical procedure of averaging all cell data 
acquired over all iterations. We have demonstrated that the concept of 
this approach is also feasible for cellular DEP applications in this work. 

Fig. 5. Comparison of the multiple measurement–based statistical approaches used in this study to determine DEP cell mobility. (A) Representative scatterplot of cell 
radius versus cell fco from a single measurement of untreated MCF-7 cells without individual cell tracking. (B) Representative scatterplot of cell radius versus cell fco 
from multiple measurements (7 cycles) of untreated MCF-7 cells. (C) Representative scatterplot of cell radius versus cell fco from averaging multiple measurements 
from individual untreated cells using the individual cell tracking and labeling process. (D and E) The developed methods for assessing cell fco and cell r in an un-
treated cell population. Each left panel is the mean and standard deviation of fco and r using the three developed methods. The right panel is the coefficient of 
variation (CV) for each method. One-way repeated ANOVA and Bonferroni’s multiple comparisons of the examined cells were used to statistically compare the 
methods (no significant differences at P > 0.05 were found in any of the comparisons). All color maps correspond to the density probability of each sample. PCC is the 
abbreviation for the Pearson correlation coefficient, which was applied to determine the size-dependent relationship between cell r and fco. The raw data are pre-
sented in Fig. S1. A total of 96 cells were used to examine this approach. The result of independent repetition experiment is described in Fig. S14. 
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3.2. Ability to distinguish cellular subpopulations in an artificial cell 
mixture 

We next evaluated the discrimination performance of the developed 
platform using an artificial 1:1 cell mixture of untreated and MβCD- 
treated cells. We used MβCD because it is known to make the membrane 
morphology smoother by depleting cholesterol [11,48], which implies 
that MβCD treatment could affect cell dielectric properties. We exam-
ined the change in cellular fco in the MβCD-treated cells by applying the 
ensemble average method, as shown in Fig. S4. Fig. 6A–C presents the 
density scattering plots for the prepared cell mixture. The plots were 
made from the single measurement dataset, multiple measurements of 
the whole dataset, and multiple measurement ensemble average dataset, 
respectively. The data were classified using the unsupervised GMM 
clustering technique [49–51] under an assumed ideal condition (i.e., the 
existence of two subpopulations with a 1:1 ratio). The scatterplots 
clearly show that the ability to distinguish the two subpopulations 
depended on the dataset and was best with the ensemble average dataset 
(Fig. 6A–C). 

For a more quantified comparison of the three different approaches, 
we evaluated a cell occupancy among classified samples as shown in 
Fig. 6D using the scatter plot results. In comparison to the ideal per-
centage in Fig. 6D, the percentages of untreated and MβCD-treated cells 
were 31 % and 36 %, respectively, and undecidable/indeterminable 
cells were 33 % in the plot made of a single measurement dataset. The 
plot made of multiple measurements of the whole dataset showed 37 % 
(untreated cells), 55 % (MβCD-treated cells) and 8 % (undecidable/ 
indeterminable cells). The plot made of multiple measurement ensemble 
average datasets was the same as the true value (i.e., percentage of 
untreated and MβCD-treated cells were both 50 %). This shows that it is 
difficult to distinguish two subpopulations in cell mixture by the single 
measurement method or the whole data with multiple measurements 
method. On the other hand, the multiple measurement ensemble 
average data method showed complete discrimination of the mixed 
cells. Taken together, the reliability and selectivity of classification 
using the developed platform is capable of being applicable for dis-
tinguishing two different subpopulations within an isogenic cell popu-
lation using our statistical approaches. The ensemble average approach 
combined with multiple measurements tracking each individual cell and 
GMM technique can be used to analyze different subpopulation groups 
such as untreated and drug-treated cell groups in the isogenic cell 
population. 

In this article, we could not utilize the cell staining technique during 
DEP experiments because our DEP platform was equipped with 

brightfield microscopy instead of fluorescence microscopy. However, 
we were able to observe a noticeable difference in morphology between 
the untreated cell population and the MβCD-treated cell population 
when the cells detached from their culture dish due to cholesterol 
depletion by MβCD agents, as shown in Fig. S6. Although the distinct 
visual difference between the two groups was not clearly observed in the 
DEP chip platform after the exchange of DEP buffer, we are sure that the 
cells in the two groups had different roughness on their plasma mem-
brane, characterized by folds, ruffles, and microvilli. This was based on 
our DEP crossover frequency results, which were based on the theory 
between fco and the smooth cell plasma membrane [32] and previous 
impedance analysis [48]. In addition, we assessed the quality and 
quantity of the separated populations using three different methods, 
considering the duration of MβCD agent treatment as shown in Fig. S8. 
Among the three methods, the average method demonstrated the most 
effective discrimination between the two groups in the 1:1 mixed sample 
(Fig. S8E). Additionally, the trend of the fco value in the separated 
population using the average method closely matched the results ob-
tained from independent MβCD agent treatment time experiments 
(Fig. S8F). However, we acknowledge the limitation of our study in that 
we were unable to confirm our data with another instrument, although it 
seems plausible given the circumstances and our results. We will plan to 
address this limitation in future investigations once we have access to an 
additional analytical instrument. 

3.3. Ability to distinguish cellular subpopulations during recovery period 
after MβCD treatment 

To demonstrate the ability of our developed platform to distinguish 
cellular subpopulations in drug-induced conditions in which the true 
ratio of each subpopulation is unknown, we treated MCF-7 cells with 
MβCD for 2 h and then removed the MβCD. The cells, whose membranes 
were altered in response to MβCD, were allowed to recover for 24 h, and 
then the DEP response (cellular fco and radius (r)) was analyzed. 
Fig. 7A–C shows the fco and r values obtained from the recovered cells 
using the single measurement method, multiple measurement of the 
whole dataset method, and the multiple measurement ensemble average 
method, respectively. The DEP fco level of the cell population returned to 
normal levels over time. This tendency seems to be due to the cells’ self- 
recovery ability, as reported in a previous study [48]. Interestingly, the 
DEP fco data had a multimodal scattering distribution, rather than a 
unimodal distribution, in the plots made from multiple measurements of 
the whole dataset and the multiple measurement ensemble average 
dataset, implying that two distinct cell populations existed in the 

Fig. 6. Comparison of the multiple measurement–based statistics approaches for discriminating between subpopulations in a 1:1 mixture of untreated 
cells and MβCD-treated cells. (A–C) Representative density scatterplot of cell fco versus cell radius for identical cell samples using a single measurement (A), 
multiple measurements (B), and ensemble averaging statistics per individual cell (C). (D) Cell occupancy among the classified samples (A–C). Each dot denotes the 
radius and fco data of individual cells, and dot color represents the density probability for the given cells. A total of 104 cells were used to examine this approach. The 
result of independent repetition experiment is described in Figs. S7 and S15. 
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recovered cells. We first evaluated the preference level of the cell sub-
populations using the GMM model. Optimized estimations using the 
Bayesian information criterion, which is generally used to assess 
multimodal distribution status (Fig. S5) [52,53], show the existence of 
only one subpopulation in the plot made from the single measurement 
dataset and two different subpopulations in the plots made from both 
the multiple measurements of the whole dataset method and the mul-
tiple measurement ensemble average dataset method (Fig. 7A–C). To 
clarify those differences, we evaluated cell occupancy among the clas-
sified samples using scatterplots. As shown in Fig. 7D, the recovered 
cells could not be divided into any subpopulations in the plot made from 
the single measurement dataset. On the other hand, in the plots made 
from multiple measurements of the whole dataset, the percentages of the 
two distinct subpopulations were 50 % and 32 %, respectively, and with 
18 % of the cells deemed indeterminable. When the data obtained from 
the multiple measurement ensemble average method were used, the 
percentages of the two distinct subpopulations were 45 % and 50 %, 
respectively, with only 5 % of the cells deemed indeterminable, showing 
that the subpopulations were best distinguished by the multiple mea-
surement ensemble average method. In the plots made from the multiple 
measurement ensemble average dataset, the average fco value for one 
population is close to that of untreated cells (magenta lines in 
Fig. 7A–C), implying that this subpopulation had recovered almost 
completely, and the average fco value of the other population seems to be 
close to that of cells treated with MβCD for 1.5 h, suggesting that this 
subpopulation was partially restored (blue lines in Fig. 7A–C). 

Those results indicate that two different subpopulations, which 
originated from an MβCD-treated isogenic cell population with 20 kHz 
as the mean fco value, can be quantitatively classified by the ensemble 
average stochastic approach in combination with multiple measurement 
data obtained with the developed measurement platform. Subpopula-
tion 1 (Sub1), with a lower fco than the other subpopulation, is similar to 
the fco distribution of untreated cell samples, with no statistical signifi-
cance (P > 0.05) between them in a two-sample t-test. This indicates that 
Sub1 has almost recovered and has normal DEP properties. The other 
subpopulation (Sub2) shows a statistically significant correlation with 
the MβCD-treated cell sample (P < 0.01), indicating that Sub2 is still 
recovering from its drug-induced alteration. The DEP property of the 
Sub2 population was similar to the DEP property of cells treated with 
MβCD for 1.5 h (Fig. S11). Further investigation is needed to compare 
the cellular properties of the Sub2 population with those of cells treated 
with MβCD for 1.5 h. However, the classification accuracy was 

guaranteed through the consistency of the results obtained from the 
mixed sample of treated and untreated cells by the ensemble average 
approach (Figs. S12 and S13). Those results show the superior perfor-
mance of the ensemble average approach over the others tested. In DEP 
cell manipulation, a main focus is to maintain cell viability before and 
after experiments in a low ionic strength buffer. In our experiment, we 
used the trypan blue technique to assess cell viability for 30 min after 
DEP, resulting in approximately 90 % viability. The conductivity of the 
DEP medium was 0.006 S/m under our conditions, significantly lower 
than that of the native cell medium, which has a conductivity over 1.5 S/ 
m. The low conductivity of the cells increases their dielectric contrast 
with the surrounding media, allowing them to be effectively manipu-
lated with DEP force. In many DEP applications, the DEP buffer is 
typically composed of sucrose and D-glucose to produce a low conduc-
tivity with an isotonic osmolarity similar to the native medium [9,10,37, 
54,55]. Unfortunately, previous studies using an isotonic sucrose/dex-
trose buffer (DEP buffer) for DEP manipulation have reported poor cell 
viability [54,56]. Moreover, the strong electric field such as 10 Vp-p can 
induce cell death by altering the plasma membrane permeability when 
the electric potential exceeds the cell membrane potential. To enhance 
cell viability, we prepared a DEP buffer supplemented with BSA and PBS 
solutions, which have been reported to increase cell viability [9,10,37]. 
Additionally, we utilized an electrode design that utilizes low voltage (2 
Vp-p) for the manipulation of various living cell movements. Finally, we 
took into account the resting duration after one cycle in AC electric 
signal conditions. Unfortunately, we still cannot exclude the possibility 
of intracellular changes including metabolism and cytoplasmic con-
ductivity due to cell ion leakage. However, because we observed the 
uniformity of both cell viability, cell size, and DEP crossover frequency, 
which is mainly affected by the morphology of the plasma membrane, 
during our experiments, we believe that the impact of the unknown 
variable from cell internal changes will be negligible in our experiments. 
We will be further investigating this issue with the help of a drug for the 
control of the cell membrane channel. Taking our results together, we 
conclude that the ensemble average stochastic approach combined with 
multiple measurement data obtained by the developed platform can 
identify cellular subpopulations in recovering cell populations that are 
difficult to assess using bulk measurements such as electric cell substrate 
impedance sensing. 

Fig. 7. Comparison of the multiple measurement–based statistical approaches for assessing cell heterogeneity during cell recovery. (A–C) Representative density 
scatterplots of cell fco versus cell radius for identical cell samples using a single measurement (A), which does not distinguish cellular subpopulations, multiple 
measurements (B), and ensemble averaging statistics for individual cells (C), which do distinguish cellular subpopulations after 24 h in fresh serum-free Dulbecco’s 
modified Eagle’s medium buffer following MβCD treatment. The magenta and blue lines are the mean fco for the cell population without and with MβCD treatment, 
respectively (see Fig. S8 for the mean fco with and without MβCD treatment). (D) Cell occupancy among the classified samples with respect to the Bayesian in-
formation criterion value for each method (A–C) (see Fig. S7). A total of 114 cells were used to examine this approach. The result of independent repetition 
experiment is described in Figs. S16 and S17 
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4. Conclusion 

We developed a novel method to distinguish cellular subpopulations 
using an easy-to-implement and generalizable label-free platform that 
measures the DEP cross-over frequency (fco) and cellular radius (r) of 
individual cells, and we decreased measurement noise by using 
ensemble average statistics. To verify the developed method, we first 
measured the fco and r of untreated MCF-7 cell samples using three 
different methods: single measurements, multiple measurements of the 
whole sample for 7 cycles (tracking individual cells), and ensemble 
averaging of multiple measurements from each cell with the stochastic 
approach. A comparison of the results obtained from the three different 
methods shows that the ensemble average with the stochastic approach 
provided the best performance by reducing instrument and random 
noise, which allowed it to obtain more precise and reliable results. Next, 
we tested its ability to identify cellular subpopulations within a cell 
mixture by artificially mixing untreated cells and MβCD-treated cells in a 
1:1 ratio. The ensemble average approach divided the untreated cells 
from the MβCD-treated cells, returning the correct percentage of un-
treated and MβCD-treated cells (50 %:50 %). Lastly, we successfully 
discriminated a cellular subpopulation that was recovering from MβCD- 
treatment based on the measured fco. While the cells were recovering, 
we identified Sub1, with an fco in good agreement with that of the un-
treated cell sample, and Sub2, with an fco that differed from that of 
MβCD-treated cells. These results indicate that those subpopulations 
exist within the isogenic cell population during the recovery process. 
Specifically, Sub1 had almost recovered and showed normal DEP 
properties, and Sub2 was still recovering from its drug-induced alter-
ations. In conclusion, our platform used with the ensemble average 
stochastic approach can identify cellular subpopulations generated by 
intracellular changes. Our results here suggest that our platform, which 
is based on an improved DEP technique, is a reliable and powerful tool 
for distinguishing and characterizing subpopulations generated by 
intracellular changes and that it opens a new avenue for next-generation 
multiplexed in vitro cell assays using measurements of dielectric cell 
properties. 
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