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Mitigation of SARS-CoV-2 transmission at a large
public university

In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their popula-

tions, threatening health of the university and surrounding communities, and viability of

in-person instruction. Here we report a case study at the University of Illinois at Urbana-

Champaign, where a multimodal “SHIELD: Target, Test, and Tell” program, with other non-

pharmaceutical interventions, was employed to keep classrooms and laboratories open. The

program included epidemiological modeling and surveillance, fast/frequent testing using a

novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA

extraction, called covidSHIELD, and digital tools for communication and compliance. In Fall

2020, we performed >1,000,000 covidSHIELD tests, positivity rates remained low, we had

zero COVID-19-related hospitalizations or deaths amongst our university community, and

mortality in the surrounding Champaign County was reduced more than 4-fold relative to

expected. This case study shows that fast/frequent testing and other interventions mitigated

transmission of SARS-CoV-2 at a large public university.
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It has been very challenging to control the spread of SARS-
CoV-2 worldwide. Strategic deployment of non-
pharmaceutical interventions has relied primarily on com-

bining laboratory performance characteristics with theoretical
modeling to estimate real-world outcomes. However, this proved
particularly challenging during Spring and early Summer 2020
due to limited availability of data on viral load dynamics through
different disease stages especially the pre-symptomatic shedding
phase, the lack of consensus on the dominant mode of trans-
mission of COVID-19 specifically the controversy about the role
of airborne route1, and the lack of a quantitative framework for
the interplay between human behavior and transmission
dynamics2,3. Colleges and universities have proven to be espe-
cially difficult environments. As our ~35,000 undergraduate
students at the University of Illinois at Urbana-Champaign
(UIUC) departed campus to continue their education remotely in
Spring of 2020, we recognized their return in the Fall would
present significant challenges. Our biggest concern was that
unmitigated transmission amongst our undergraduate student
population would drive increased cases in our faculty and staff
and/or the surrounding Champaign County community. In fact,
many universities saw extensive transmission of SARS-CoV-2
among their populations in the Fall of 2020, threatening the
health of students, faculty and staff, the viability of in-person
instruction, and the health of surrounding communities4,5.

Here, we show that population scale-deployment of a mul-
timodal platform of non-pharmaceutical interventions, centered
on fast/frequent testing with a novel saliva-based RT-qPCR
assay for SARS-CoV-2 that bypasses RNA extraction, called
covidSHIELD, effectively mitigated transmission of SARS-CoV-
2 at a large public university and its surrounding community.
The SHIELD: Target, Test, and Tell program was devised to
mitigate SARS-CoV-2 transmission through identification and
isolation of infected individuals before they spread the virus.
This program worked in concert with other non-pharmaceutical
interventions, including masks, social distancing, and robust
education efforts, to allow us to achieve our transmission
mitigation goal.

Since the tools needed to implement this 3-part strategy were
not available at the time, they were each created during the
Summer of 2020. This was a time of great uncertainty as the
future trajectory of the pandemic was unknown and many
campuses had doubts about budget and finances during the fol-
lowing academic year6. Several studies started to surface as early
as June 2020 about feasibility of college reopening in the fall
20207–11. However, conclusions varied widely from suggesting
that there is no way to reopen universities safely12 to suggesting
that bringing students back to class will make them safer13. There
was a need for developing a tailored model for safe reopening of a
large public university, like the University of Illinois, located in a
college town, having a vibrant residential student program, and
with the university population constituting almost 25% of the
town population.

Results
Target. For the Target component of the SHIELD program,
epidemiological modeling helped determine how often the uni-
versity population should be tested, and real-time data analysis
further allowed for strategic adjustments to testing schedules
throughout the semester to maximally mitigate spread. We note
that all epidemiological modeling requires assumptions, which
means that the predictive capacity of such modeling always has
limitations. For a detailed description of the methods employed
and assumptions included in our modeling studies, please see
Methods section.

Given early data suggesting that SARS-CoV-2 can be transmitted
by pre-symptomatic and asymptomatic carriers14–19, fast and
frequent testing of all individuals in the university community was
expected to be critical for mitigating localized outbreaks by
enabling identification and isolation of infected individuals prior
to clinically impactful shedding of SARS-CoV-220,21. Available data
on viral dynamics19,20,22,23 suggested that test results should be
returned within hours, not days, and that testing might need to be
performed multiple times per week, particularly for the populations
most likely to be exposed to SARS-CoV-2. To explore these issues
quantitatively, we used a variety of methods to arrive at an optimal
strategy for our campus.

We calculated how the basic reproduction number, Ro, is
modified by a multiplier, M, that accounts for the fact that if an
individual is detected to be positive and immediately isolated,
they are unable to continue infecting others. This results in a
fractional reduction of Ro (Rt=M Ro) as detailed in Fig. 1a. Using
an infectivity profile that includes pre-symptomatic shedding19,24,
we could calculate M as a function of testing frequency (see the
“Methods” section). We found that testing everyone every 7 days
yields M= 0.71, but testing everyone every 3.5 days yields
M= 0.45, because their infectious period while not isolated (Area
A in Fig. 1a) is reduced. These estimates are conservative as we
neglected the intrinsic reduction in transmission for truly
asymptomatic individuals compared to symptomatic individuals
(e.g., Kissler et al., 202125) This simplification is justified as the
goal was to control the epidemic in the worst-case scenario.

We also simulated the spread of COVID-19 on campus using
agent-based modeling, following each student as they attend
university activities and participate in off-campus socializing (see
the “Methods” section for key assumptions and details, which
included early recognition that SARS-CoV-2 is spread via
airborne transmission26). As shown in Fig. 1b, this analysis
predicted that masking or the combination of masking and social
distancing would provide inadequate protection against spreading
of COVID-19 (R0 > 1). However, the addition of twice per week
testing was predicted to make R0 manageable (R0 < 1). The
additional inclusion of testing-enabled manual contact tracing
and digital exposure notifications predicted even further reduc-
tions. In fact, the model predicted these mitigation approaches
would be synergistic and highly effective when applied in concert,
with R0 small enough to contain the epidemic when using the full
suite of twice-weekly testing of everyone on campus, isolation of
newly infected people, contact tracing, quarantining and use of
the Safer Illinois exposure-notification app, along with masking
and social distancing. These general trends were robust within the
validated boundary conditions of the underlying assumptions (see
the “Methods” section and Supplementary Fig. 1). These
simulations reinforced that the effectiveness of testing, isolation
and contact tracing in reducing transmission was heavily
dependent on rapid turnaround, because of the high transmis-
sibility of COVID-19, in agreement with other modeling results27.

Test. When considering various testing options, the evaluation of
virus levels in saliva was highly attractive due to the known
detection of SARS-CoV-2 through oral shedding and the poten-
tial for rapid, easy, and non-invasive self-collection28–30, thus
minimizing the need for direct healthcare provider–patient con-
tact and consequent conservation of personal protective equip-
ment (PPE). Numerous reports have detailed the detection of
SARS-CoV-2 in saliva31–35, and salivary/respiratory aerosols and
droplets are recognized as a significant factor in person-to-person
transmission of SARS-CoV-228. However, all saliva-based assays
available in the Spring of 2020 required RNA isolation, which
added cost, time, and supply chain bottlenecks.
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With the goal of performing up to 20,000 individual RT-qPCR
tests for SARS-CoV-2 per day, we developed a saliva-based assay
for SARS-CoV-2 nucleic acid detection that bypasses RNA
isolation/purification36 (called covidSHIELD). This process relies
on up-front heating of freshly collected saliva samples, an
attractive and simple method to inactivate the virus without
having to open the collection vessel. Using intact, γ-irradiated
SARS-CoV-2 spiked into fresh human saliva (that was confirmed
to be SARS-CoV-2 negative), we observed substantial time- and
temperature-dependent improvement in SARS-CoV-2 nucleic
acid detection by direct RT-qPCR, without the use of RNA
extraction (Fig. 2a). When incubated at ambient temperature (no
heat treatment), no SARS-CoV-2 genes are detectable, but as
temperature and incubation time increase, substantial improve-
ment in viral nucleic acid detection is observed, with 100%
identification of the three targeted SARS-CoV-2 genes, in all
replicate samples, detected following a 30 min incubation at
95 °C. Importantly, a short heating time (5 min) at 95 °C (as has
been examined by others37,38) does not allow for sensitive
detection; the 30-min duration is essential, as it is likely that this
extended heating drives temperature-dependent inactivation of
components of saliva that inhibit RT-qPCR. Preliminary

comparison of this heating-based RNA extraction-free protocol
to a standard protocol involving RNA isolation using 25 split
clinical saliva samples showed 100% concordance between the
two assays (Fig. 2b and Supplementary Table 1), suggesting that
the heat-inactivation step does not affect assay outcome. This
RNA extraction-free protocol, which is based upon the detection
of three viral genes—replicase polyprotein 1ab (ORF1ab),
nucleocapsid (N-gene), and spike protein (S-gene) using the
TaqPath COVID-19 Combo kit is also highly sensitive (limit of
detection of 500–1000 SARS-CoV-2 viral copies/mL, Supplemen-
tary Fig. 3), can be optimized for high-throughput using robotic
sample transfers with no impact on sensitivity (Supplementary
Table 2), is minimally affected by exogenous and endogenous
potentially interfering substances (Supplementary Table 3), yields
stable results for up to 7 days when the saliva is stored below
25 °C prior to heat inactivation (Supplementary Fig. 4), and is
also compatible with other RT-qPCR primers (such as the CDC
primers targeting N gene, Supplementary Fig. 5). Head-to-head
comparison with a subsequently developed direct saliva to RT-
qPCR technique that requires opening of tubes and addition of
proteinase-K to saliva samples prior to heat inactivation39 shows
that the simple covidSHIELD protocol for viral inactivation

Fig. 1 Target. a Sensitive testing can reveal a positive case early in the infection, and thus isolation of the index case reduces the number of people infected
by this index case. Frequent testing and rapid isolation reduce the time period during which a person is infectious but not isolated (Area A). As a result, the
R0 multiplier for testing is the ratio between the truncated area under the curve (Area A) and the untruncated area under the curve (Area A+Area B). The
dashed vertical line between Area A and Area B represents the moment an infected individual is isolated; as this line moves to the left, M is decreased and
viral spread is reduced. b Effect of different mitigation interventions on the basic reproduction number R0 as computed in our agent-based model. Mean R0
values (n= 10) are indicated for each conditions tested. Error bars represent SEM. If R0 is >1 (orange dashed line at R0= 1), the epidemic grows
exponentially. If R0 is <1, any outbreak diminishes exponentially. Without any mitigation, R0 is close to 3 and a runaway epidemic will occur. Masking and
social distancing help reduce transmission but can’t suppress growth of cases on their own as R0 is still greater than one. However, when these measures
are combined with frequent testing (2 tests a week), R0 drops to 0.35 and containment of epidemic becomes possible. Adding extra mitigation
interventions such as manual contact tracing and risk based exposure notification being R0 further down to 0.19 suggesting the potential for strong control
of the epidemic on campus. The details of the agent-based model are given in the “Methods” section. The results shown here are computed assuming that
100% of the students are compliant with twice a week testing, isolation, and quarantine. We also ran the same simulation assuming 60% compliance, and
the same general trends were observed with R0 for the full SHIELD program predicted to still be manageable (0.5, see Supplementary Fig. 1). Simulated
effects of delays and imperfect contact tracing on the final size of epidemic and peak quarantined population, using the agent-based model, are shown in
Supplementary Fig. 2.
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results in approximately 8-fold more sensitive detection using the
TaqPath COVID-19 Combo kit (Supplementary Fig. 6).

In parallel to the work on test development, we created a
dedicated CLIA-registered laboratory in our on-campus Veter-
inary Diagnostic Laboratory that includes semi-robotic capacity
to efficiently process up to 20,000 saliva samples per day. We also
set up ~20 saliva collection stations throughout campus and all
associated infrastructure for hourly delivery of samples to the
CLIA lab.

A clinical study was performed with 120 individuals suspected
of COVID-19 by their healthcare provider to compare the results
of the covidSHIELD assay to results from contemporaneously
collected nasopharyngeal or mid-turbinate nasal swabs analyzed
by an FDA Emergency Use Authorized reference method for
detection of SARS-CoV-2. Samples were collected at four
different geographically distinct sites (one in Urbana, IL; one in
Madison, WI; two in Chicago, IL). All nasal swab samples were
analyzed in the clinical pathology laboratory at the University of
Illinois Chicago Hospital using the Abbott RealTime SARS-CoV-
2 assay performed on the Abbott m2000 System with a LoD of
2700 NDU/mL, and all saliva samples were analyzed using the
covidSHIELD assay at the University of Illinois Urbana-
Champaign CLIA-registered laboratory. Participants were all
over the age of 18 and suspected to have COVID-19 (either with

symptoms or with known exposures to someone positive for
COVID-19). Of the 120 sample sets that were collected, 31 of the
nasal samples were found to be positive and 89 of the nasal
samples were found to be negative (Fig. 2c, Supplementary
Table 4). Excellent overall concordance (98.3%, 95% CI,
94.1–99.8%), positive percent agreement (96.8%, 95% CI,
83.2–99.9%) and negative percent agreement (98.9%, 95%
CI, 93.9–99.9%) were observed for the covidSHIELD assay on
the contemporaneously collected saliva samples (for more
detailed information on the clinical study, see the “Methods”
section and Supplementary Tables 5, 6).

An additional clinical study was performed with 17 individuals
confirmed by mid-turbinate nasal swabs analyzed at the Johns
Hopkins University School of Medicine to be positive for
COVID-19 and to have low viral loads (Ct= 32–42, avg. 37).
Contemporaneously collected saliva samples were then analyzed
using the covidSHIELD assay at the University of Illinois Urbana-
Champaign CLIA-registered laboratory. As shown in Fig. 2d, the
covidSHIELD assay detected at least two genes for SARS-CoV-2
in 16/17 of these low viral load samples, and one gene for SARS-
CoV-2 was detected in the 17th sample. In 15 out of these
17 samples, the average Ct values for the covidSHIELD assay were
lower than that of their matched nasal swabs, and the overall
average Ct value for the covidSHIELD assay was significantly

Fig. 2 Test and tell. a The effect of heat on SARS-CoV-2 nucleic acid detection in saliva. γ-irradiated SARS-CoV-2 (1.0 × 104 viral copies/mL) was spiked
into fresh human saliva (SARS-CoV-2 negative). Samples diluted 1:1 with 2× Tris–borate–EDTA (TBE) buffer were incubated at 25 °C, or in a hot water bath
at the indicated temperature and incubation time. All saliva samples were spiked with purified MS2 bacteriophage as an internal control and directly
analyzed by RT-qPCR, in triplicate, for SARS-CoV-2 nucleic acid corresponding with ORF1ab gene, N-gene, and S-gene. Undetermined Ct values are plotted
as ND. This experiment was repeated at least three times. b 25 clinical saliva samples were split into two aliquots upon receipt, one set was processed
using our covidSHIELD assay and the other set was subjected to RNA extraction. 5 μL of processed saliva were subsequently used as templates for RT-
qPCR. A positive result is called when two out of three viral target genes is detected. c Qualitative outcome of parallel testing of paired mid-turbinate swabs
and saliva with the Abbott RealTime SARS-CoV-2 assay and covidSHIELD. 120 participants were enrolled in a clinical study comparing results from
contemporaneously collected nasopharyngeal or mid-turbinate nasal swabs analyzed using both protocols. Overall concordance was 98.3% (95% CI,
94.1–99.8%), positive percent agreement was 96.8% (95% CI, 83.2–99.9%) and negative percent agreement was 98.9% (95% CI, 93.9–99.9%). All
clinical trials were reviewed by the Western Institutional Review Board. All participants gave written and informed consent. d Additional clinical study
outcome of 17 individuals confirmed to be positive for COVID-19 and to have low viral loads (Ct= 32–42, average 37) by mid-turbinate nasal swabs
analyzed at the Johns Hopkins University School of Medicine using Abbott Alinity compared with contemporaneously collected saliva samples that were
analyzed using the covidSHIELD assay at the University of Illinois Urbana-Champaign CLIA-registered laboratory. p-value= 0.0004 was calculated using
2-tailed, unpaired t-test. e Mock representative images from the Safer Illinois app. The screen on the left appears when a user is in compliance with the
campus testing protocol and has received a recent negative test for SARS-CoV-2. The screen on the right appears when the user of the app is out of
compliance, when they have had a recent exposure notification, or when they have tested positive for the virus.
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lower than that of nasal swab-based based test (Avg Ct for
covidSHIELD= 31.82, average Ct for nasal swabs= 37.05,
p < 0.0004) (For more detailed information on the clinical study,
see the “Methods” section and Supplementary Table 7). More
recent studies have further demonstrated that covidSHIELD is
highly effective for detecting infected individuals early in the
disease, and throughout the period of infectiousness, that viral
genome loads tend to peak earlier in the covidSHIELD saliva-
based RTqPCR assay relative to a standard nasal swab-based
RTqPCR assay40.

The U.S. Food and Drug Administration has granted
Emergency Use Authorization to the covidSHIELD test:
EUA202555 SUMMARY covidSHIELD Assay (https://www.fda.
gov/media/146317/download).

Tell. It was critical to maximize the speed and effectiveness with
which the results of the covidSHIELD assay could be commu-
nicated, and to couple these results to participation in desired
activities to encourage compliance. To achieve these goals, a
multidisciplinary team developed a COVID-19 app called Safer
Illinois. The app automatically receives the results of the SARS-
CoV-2 tests performed at the UIUC CLIA-registered Lab in a
manner that is privacy-preserving and HIPAA compliant. The
app also displays a cover screen that grants or denies access to
campus buildings based on an individual’s most recent covid-
SHIELD test results (Fig. 2e). A proximity-based and thus
privacy-preserving exposure notification feature warns users
when they have been in significant contact with someone who has
recently tested positive. In order to maintain “Building Access
Granted” status, an individual must be up to date on their
required testing frequency, not have recently tested positive for
COVID-19, and not have a recent exposure notification from the
app. The Building Access feature is a key driver of compliance
with the testing protocol. The code for Safer Illinois was made
publicly available and independently audited by three different
independent expert groups. Survey results and online town hall
style meetings showed that in general the privacy-preserving
features of the app were well-appreciated, but there were still
some concerns about privacy and potential for data sharing.
Thus, we decided not to mandate the use of Safer Illinois. People
could alternatively choose to receive their covidSHIELD test
results via a secure email through the campus’ McKinley Health
Center, and/or utilize a web-based process to communicate their
building entry status.

Deployment during Fall 2020. After an encouraging pilot study
in July 2020, we deployed the complete SHIELD: Target, Test,
and Tell platform, in concert with other non-pharmaceutical
interventions including masks, social distancing, and robust
education efforts, across our entire community of undergraduate
and graduate students, postdoctoral associates, staff and faculty, a
population of about 50,000 people, from the time our under-
graduates returned on August 15, 2020 until the last scheduled
day of the semester on December 23, 2020. Participation in the
SHIELD program was required for all students living in Cham-
paign-Urbana, and for all faculty and staff that chose to access
campus buildings. From matching testing records with enroll-
ment data we estimate that ~60% of our students were highly
compliant with the required testing throughout the semester,
most of the remainder were somewhat compliant, and there was a
minority of students who were non-compliant. These estimates
were also consistent with the observed probability distribution
function for the time interval between tests for the student
population which suggested that the mean time between tests was
4.4 days, the probability of inter-test time larger than 7 days is

11%, and that 62% of the tests were spaced at 3.5 days or less (see
Supplementary Fig. 7). As summarized in Fig. 3a, during this time
we performed >1,000,000 covidSHIELD tests with an average
turnaround time of 11.2 h, and we kept classrooms, research
laboratories, and many other University activities open. There
were more than 49,000 unique users of Safer Illinois (approxi-
mately 94% of the individuals who were eligible to be tested).
Over the semester, 94% of the virus test results were transmitted
via the app. There were 3.95 million Safer Illinois app sessions
(IOS users, 77%; Android users, 23%), more than 920,000 views
of the Building Entry Status, 166,000 views of Testing Locations,
26,600 views of Health Guidelines, 25,000 views of the Health
Care Team page, and 1160 digital exposure notifications. During
this time period, our new daily COVID-19 case positivity rates
were less than 0.5% for 75% of the days, we had no evidence of
spread within our classrooms or research laboratories based on
contact tracing information per case investigations conducted by
Champaign Urbana Public Health Department (CUPHD), and
we also had zero COVID-19-related hospitalizations or deaths
among our campus community.

Although in general our positivity rates remained low, there were
four periods during the Fall semester during which we observed
transient increases in the number of daily cases (Periods I–IV
indicated in Fig. 3a). The most notable example occurred at the
beginning of our semester (Period I). Based on our modeling we
expected that several hundred of our ~35,000 undergraduate
students would be infected with SARS-CoV-2 when they returned
to our campus in mid-August 2020 (see the “Methods” section). The
university required students to test as soon as they arrived on
campus, and they were not permitted access to any campus buildings
until they received a negative test result. From August 12 to 23, we
conducted a total of 55,034 tests and detected 288 new cases of
COVID-19, yielding a new case-positivity rate of 0.52%. During the
period of August 24–September 21, our covidSHIELD testing
revealed a spike in cases (Fig. 3a). Because we were testing everyone
in our community twice per week, we had an early warning signal
and comprehensive dataset that allowed us to respond in a data-
driven manner. More than 95% of the new positive cases were in
undergraduates, and we identified several clusters in buildings where
social activities inconsistent with campus recommendations had
been reported. Contact tracing combined with covidSHIELD testing
data revealed early signs of potential outbreaks in these buildings.

Guided by these data, we did three things: First, we required
that all undergraduate students engage only in essential activities
for 2 weeks. Essential activities were defined as in-person classes,
laboratory activities, employment responsibilities, solo outdoor
exercise, religious activities and grocery shopping. Second, we
modified our testing protocols to prioritize fast and frequent
testing of undergraduates, especially those at highest risk of
transmitting COVID-19. Undergraduates living in buildings with
high numbers of positive cases were required to test three times
per week, all other undergraduates continued to be required to
test twice per week, and all faculty, staff and graduate students
were switched to once per week. Third, we increased the speed
with which undergraduates who tested positive were isolated
using text messaging. While we cannot determine the specific
impact of these interventions, our observation was that over the
course of the next two weeks, our daily case positivity rate
dropped from a peak of 2.86% on August 30 to 0.25% on
September 12 (Fig. 3a). Furthermore, we conducted a retro-
spective analysis in mid-October 2020, using our agent-based
model, to explore the impact of compliance with isolation and
quarantine, imported infections from surrounding community, as
well as the essential activities period on the trajectory of cases
(Supplementary Fig. 8). The results reinforced the critical role of
compliance in shaping the epidemic curve and suggested that
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Fig. 3 Deployment of frequent repeat testing at the University of Illinois in fall 2020. a Timeline of detected cases during surveillance testing from July 6
to December 23, 2020. The top panel displays the daily new cases (blue) and the daily case positivity (orange). The daily case positivity is computed as the
(number of new cases)/(unique number of individuals tested during the day). The lower panel shows the number of daily tests performed (green), which
to an excellent approximation is the same as the number of unique individuals tested in a day. b Ct values of the first positive test as a function of time
elapsed since the last negative test. The difference between the first (1 day) and the second (2 days) bins is highly statistically significant (p-value 2.2e−7),
and that between the second (2 days) and the third (3 days) bins is statistically significant (p-value 3.7e−4). p-values shown are for the two-sided
hypothesis of non-zero Pearson correlation between the number of days since the last negative test (x-axis) and the Ct value of the first positive test (y-
axis). The exact sample sizes are: 341 patients who test positive 1 day since the last negative, 616 patients—2 days since the last negative, 716 patients—
3 days since the last negative, and 1230 patients—between 4 and 7 days since the last negative. The box plots were generated using the command boxplot
in Matlab 9.10.0.1684407(R2021a). The bottom and top of each box are the 25th and 75th percentiles of the sample, respectively. The distance between
the bottom and top of each box is the interquartile range. The red line in the middle of each box is the median. The whiskers go from the end of the
interquartile range to the furthest observation within the whisker length which is 1.5× the interquartile range. The outliers are marked with red + sign and
are defined as the observations that go beyond the whisker length. c Head-to-head daily testing with covidSHIELD and antigen-based lateral flow assays in
a subgroup of participants (n= 190) from October 1, 2020 to Dec 23, 2020. A total of 13,299 contemporaneous tests were performed. Of the 190
individuals, 6 tested positive for SARS-CoV-2 on Day 0 using the covidSHIELD test but all six tested negative using the antigen test. Blue and orange bars
represent the percentage of participants that tested positive for SARS-CoV-2 on day 0 using covidSHIELD and the antigen test, respectively. d Box-and-
whiskers plot of mean Ct values of the 6 individuals who tested positive for SARS-CoV-2 using the covidSHIELD assay on Day 0. Data was plotted using
GraphPad Prism v9.3.1, where the lower and upper box extends from 25th to 75th percentiles, respectively, the line in the middle of the box is the median,
the lower and upper error lines are the minimum and maximum value, respectively; each individual values are plotted as circles superimposed on the graph.
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higher compliance levels and reduced social activities during the
essential activities period were successful in quickly containing
the initial spike. Comparing the observed case count and the
model trajectories suggested that compliance levels varied over
time, was highest during the temporary restrictions period, and
was generally between 50% and 70% depending on the number of
daily imported infections. The latter is an important confounder
to consider especially during periods of high community
transmission.

For the remainder of the semester, we continued to perform
the same approach focused on risk-prioritized fast/frequent
testing and rapid isolation. All three of the subsequent increases
in cases were similarly followed by rapid declines (Periods II–IV).
Period IV is also notable. Classes were pre-scheduled to be moved
online after Thanksgiving break, but student surveys revealed that
60% of undergraduates planned to return to Champaign-Urbana
after the Thanksgiving break. We expected an increase in cases
stemming from travel and holiday gatherings, and we were
concerned about social activities during the cold month of
December. Thus, all undergraduate students that chose to return
to Champaign-Urbana were required to test three times per week.
During this time, we also returned faculty, staff and graduate
students to a twice-per-week schedule. After a small spike upon
the students’ return, our case positivity quickly reduced and
generally remained low, reaching 0.25% as we passed the
1,000,000 test mark on December 15. We ended the semester
on December 23 with a case positivity rate of 0.16%.

Analysis of viral load. Because we were testing people in our
campus community once, twice, or three times per week, by the
time we reached September 2 we had documented negative tests
for most of our campus community. This indicated that people
testing as new positives were generally still in the early stages of
infection. Prior studies suggest that Ct values of >25 (corre-
sponding to lower viral loads) are correlated with reduced ability
to recover infectious virus and hence individuals with Ct > 25
pose a lower risk for transmission21,41–45. For the people that first
tested positive with the covidSHIELD assay from September 2 to
December 23, 73% had recorded Ct values that averaged >25, and
the average Ct value was even higher when the most recent
negative test occurred within the past few days (Fig. 3b). The
covidSHIELD assay was thus likely detecting many of these new
positive cases prior to infectiousness.

Head-to-head daily testing with covidSHIELD and an antigen-
based lateral flow assay. We also compared the covidSHIELD
assay to a lateral flow assay/antigen test for COVID-19. Specifi-
cally, a subset of participants in the Division of Intercollegiate
Athletics (n= 190) were tested every day with both the covid-
SHIELD saliva RT-qPCR assay and the Quidel Sofia 2 SARS-
CoV-2 MT swab Antigen FIA assay from October 1, 2020 to
December 23, 2020, for a total of 13,299 contemporaneous tests.
This real world daily testing of asymptomatic people enabled
comparison of these two testing methods for their ability to
identify infected individuals and remove them from the popula-
tion in the early stages of infection. As shown in Fig. 3c, this study
found six SARS-CoV-2 positive participants during the entire
period. All six were identified as positive via the covidSHIELD
assay and confirmed to be positive by a subsequent positive
covidSHIELD test within the following 4 days. None of these
individuals tested positive on the contemporaneously performed
lateral flow assays (Fig. 3c). The initial average Ct value for the
covidSHIELD test in these six individuals was 30.2 ± 4.73
(Fig. 3d), consistent with the findings in Fig. 3b. We note that
while the results of this focused study are consistent with the

greater sensitivity of the covidSHIELD assay, they do not allow us
to make any conclusions as to whether such greater sensitivity
would make a difference to epidemic control. We include them
here as important comparator data for the diagnostic approach.

Analysis of mitigation of SARS-CoV-2 transmission. To probe
the extent to which SHIELD reduced transmission on campus, we
estimated the time-dependent reproduction number (Rt) and
growth rate throughout the whole semester, highlighting four
time periods (I–IV) during which we had observed transient
increases in cases of COVID-19 (Fig. 4). The case numbers fell
exponentially in time following each of these episodes. The cal-
culations were done using the package EpiNow246 which
implements several open-source tools46, and current best
practices47. The cases by date of infection were estimated based
on a stochastic distribution of delays guided by the distribution of
interval between consecutive tests (Supplementary Fig. 7). Addi-
tional details are provided in the “Methods” section. Generally,
these estimates demonstrate that Rt reached as low as 0.5, and was
frequently around 0.75–0.85. These values are also broadly con-
sistent with those inferred using the formulation outlined in48

(Rt ~ 0.55–0.78) based on the estimated piece-wise constant
exponential decay rate of cases during each period of contain-
ment (see Supplementary Fig. 9).

We also sought to quantitatively assess the extent to which
cases within the campus community influenced or were
influenced by each other, and/or by cases in the surrounding
community, by examining correlations between sub-populations
of the university and surrounding communities. Such an analysis
can only reveal the average trends and correlations, and cannot
rule out specific instances of transmission that do not conform to
the trends. As shown in Fig. 5a, the number of 7-day averaged
daily new cases of faculty/staff strongly correlated with that of
residents in Champaign County, especially after October 18
(Pearson correlation coefficient 0.86, p-value 7.99 × 10−38,
Supplementary Fig. 10a). At the beginning of the semester
(around August 31) when there was a short duration spike in
daily new cases from undergraduate students, it had little
influence on the faculty/staff (Fig. 5b) or on the surrounding
Champaign County community (Fig. 5c). Later in the semester
(after October 18), as the number of positive cases in Champaign
county and faculty/staff increased, the number of cases of
undergraduate students followed similar trends (Fig. 5b, c;
Pearson correlation coefficient for number of cases between
undergraduates and faculty/staff= 0.88, p-value 1.33 × 10−21,
Supplementary Fig. 10b). All of these data, and additional data
from time correlations of residents of Champaign County,
undergraduates and faculty/staff (Supplementary Fig. 10) indicate
that both faculty/staff and Champaign County cases were
essentially uncorrelated with the undergraduate students. Thus
the campus population did not drive cases within the surround-
ing community.

Other communities with or without SHIELD. To further eval-
uate the efficacy of the SHIELD program, we compared our
results to those observed by other communities operating with or
without fast/frequent testing with the covidSHIELD assay but
which may have been implementing other non-pharmaceutical
interventions such as masking and social distancing, as well as
symptomatic testing.

We first looked at other communities that started using
SHIELD sometime in the Winter or Spring of 2020/2021. As
shown in Fig. 6a, another university initiated the use of SHIELD
at the beginning of the Spring semester in mid-January 2021. The
observed initial 7-day average positivity rate for this community
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was >0.7%. This was rapidly reduced over the period of one
month after the introduction of SHIELD, and the positivity rate
reached <0.1% by the end of the Spring 2021 semester.

SHIELD testing was similarly introduced in the middle of the
Spring semester at a pair of high schools that required masking
and social distancing for the entire semester (Fig. 6b). The
observed 7-day average positivity rate was initially found to be
~0.5%, and after the introduction of SHIELD, this was quickly
reduced to and maintained for the rest of the semester at
</= 0.1%. This provided an opportunity to observe the positivity
rate before and after the impact of SHIELD. Similar results were
observed at a federal courthouse and a large corporate campus,
and again masking and social distancing were in place before and
after the introduction of SHIELD (Fig. 6c, d).

Finally, we compared predicted and observed COVID-19
cases and mortality among all U.S. counties with large
university enrollments (large enrollment >15,000 enrolled
students at start of Fall 2020 semester, n= 251) from July 6
to December 23, 2020. To account for delays between COVID-
19 exposure and outcome (e.g., recovery or death), a 3-week lag
was integrated49. This allowed us to compare the outcomes for
UIUC’s surrounding Champaign County to those of the other
similarly sized American Universities, most of which had
similar requirements for masking and social distancing, but
none of which had the SHIELD program. To account for the
potential effects of socio-economic disparities and the demo-
graphic makeup of a given county, the overall mean COVID-19
case and mortality rate in each county was age-adjusted and
assessed as a function of social vulnerability using linear
regression (Fig. 7a). The social vulnerability index is used as a
proxy to determine a community’s ability to prevent human
suffering and financial hardships in the event of a disaster50.
We also controlled our analysis by state, given the widely
varying policy factors that influence mortality rates (e.g., mask
mandates, business closings, etc.). Using a best-fit model for all
large university counties, Champaign observed statistically
significantly lower COVID-19 cases than predicted (32.5%

reduction in cases, 95% CI: 31.1–33.9; Fig. 7a). More
importantly, Champaign County was the county with the
greatest reduction in deaths, reducing mortality more than 4.3-
fold over expected (95% CI 3.3–5.5; Fig. 7b). The population of
Champaign County is ~210,000 and the testing population in
the SHIELD program is ~52,000. Although a fraction of
individuals in the testing population do live outside Champaign
County, it is reasonable to estimate that 25% of the county’s
population is involved in the SHIELD program. This analysis
provides strong evidence that the SHIELD Target, Test, and
Tell program uniquely resulted in a protective effect for the
communities in Champaign County compared to other
communities which may have implemented some non-
pharmaceutical interventions or symptomatic testing but did
not use the high-frequency surveillance testing combined with
real-time analysis of test results and potential exposures.

Discussion
In this case study, scaled deployment of the multimodal “SHIELD:
Target, Test, and Tell” platform, in concert with other non-
pharmaceutical interventions, mitigated the spread of COVID-19
at a large public university and allowed for the continuation of in-
person classes amidst the pandemic. Even though our classes,
laboratories and local businesses stayed open, we found no evi-
dence of transmission from students to faculty or staff, no evidence
of transmission from the university community to the surrounding
community, and no one in our campus community became ser-
iously ill or died as a result of COVID-19 during this timeframe.

We note that because all of these mitigation methods were
deployed in parallel and there were no internal control studies,
there are limitations regarding attribution of these favorable
outcomes to specific interventions. In concert with the SHIELD:
Target, Test, and Tell program other non-pharmaceutical inter-
ventions such as masking, social distancing, and robust education
efforts are likely to have also made a significant impact to the
control of COVID-19 on campus.

Fig. 4 Epidemiological analysis for COVID-19 cases on campus. a Cases estimated by date of infection. b Estimated growth rate. c Estimated effective
reproduction number Reff by the date of infection as a function of time using the method of Cori et al. assuming gamma-distributed generation time
distribution62 and a distribution between consecutive tests shown in Supplementary Fig. 7. The shaded periods (I–IV) correspond to periods of the
semester when Reff > 1 suggesting transient growth of cases. The unshaded time periods correspond to Reff < 1 suggesting that the epidemic is controlled,
and cases are decreasing. In each subplot, the credible intervals for the calculation of that output are shown with three shades. These three shades
correspond to credible intervals of 20% (darkest green), 50% (lighter green), and 90% (lightest green). Analysis was done using Epidemiological toolbox
EpiNow246. Please see the “Methods” section for more details.
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This program also yielded a novel, scalable, saliva-based RT-
qPCR assay for SARS-CoV-2 that bypasses RNA extraction and is
highly sensitive for detecting infected individuals early in the
disease and throughout the period of likely infectiousness. This
case study at the University of Illinois at Urbana-Champaign
showed that the covidSHIELD saliva test is highly scalable and
easy to implement, allowing fast, frequent and accurate testing in
a large community. Our data suggests that every other day testing
is able to identify individuals at earlier stages of infections as
indicated by lower average viral loads, and daily testing is even
better. While daily testing may not be practical on scale, such high
frequency testing may be appropriate for certain at-risk groups,
including those in congregate living and high contact athletics.

Finally, we note that the viral dynamics of different strains of
SARS-CoV-2 can vary considerably. For example, viral loads for
the Delta variant appear to peak sooner and higher, and remain
elevated for longer periods of time, consistent with a substantially
increased level of infectiousness for this strain51–53. Similarly, the
Omicron variant spread extremely fast during December 2021
and January 2022 and is characterized by a much shorter mean
generation time54. To address such challenges, it may be
important to adapt testing frequencies accordingly.

Methods
Agent-based modeling. We simulate the spread of the epidemic using a full-scale
stochastic agent-based model (ABM), which tracks the movement and disease stage
of a large number of individuals as they attend both academic functions (like
classes, libraries, and study groups) and social events (including eating at restau-
rants, congregating at bars, and attending parties). The core of the model comprises
a set of 46,850 individuals who each follow independent schedules, which specify
how the agents should move between different physical locations or zones. When
an agent enters a zone, a random position in the zone is selected and the agent is
assumed to stay at this position until he/she leaves the zone.

The model base is augmented by an infection model, which defines how agents
become infected and infect other agents. Supplemental modules for testing, contact
tracing, and quarantine/isolation can be interfaced with the core model to compare
the effectiveness of various mitigation strategies.

Infection model description. Motivated by the airborne transmission dynamics
of COVID-19, we have adopted the concept of “infection quantum”, which is
defined as the dose of airborne droplet nuclei required to cause infection in 63% of
susceptible persons55. We introduce a hybrid transmission model which decom-
poses the infectious droplets into two parts: (1) large droplets with sizes larger than
10 microns which stay within a circle of radius 2-m from an infected agent and
only infect its neighbors within the circle; and (2) small airborne droplet nuclei
with dimensions <10 microns which spread homogeneously over the zone.
Accumulating more quanta corresponds to increasing the probability of being
infected.

Fig. 5 Mitigation of SARS-CoV-2 spread in the context of the larger Champaign-Urbana Community. The daily number of 7-day averaged daily new
cases between faculty/staff and residents in Champaign County a, undergraduates and faculty/staff b, and undergraduate students and residents in
Champaign County c, for the period between August 15 and December 23. All points in three plots are colored according to their categories (orange:
undergraduate students, blue: faculty/staff, green: residents in Champaign County). Pearson correlation coefficient, 95% confidence interval, and p-values
for two-tailed test were calculated using GraphPad Prism software.
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When an agent leaves a zone, they are infected with a probability that depends on
the total number of quanta they accumulated in that zone ¼ R

ndt. Specifically, the
infection probability is given by

P infection½ � ¼ 1� exp �m ´ IR ´ Nð Þ ð1Þ
where m is a modifier that accounts for modulation of inhaled quanta due to factors
such as mask wearing, and IR is the inhalation rate of the susceptible individual55.

The quanta emission rate from an infectious agent depends on their activities in
different zones. For example, since students mostly stay silent during classes, the
emission rate is estimated to be 4 quanta per hour. As a comparison, since agents
often speak loudly in bars/parties, the quanta emission rate is assumed to be 150
quanta per hour. The emission rates are derived from Linsey et al.56. In addition, the
quanta emission rate is proportional to the infectiousness of the infected agent which
vary with the in-host viral dynamics. The infectiousness starts to be non-zero after
2 days from the time exposure. This is mean latent period estimated for COVID-19.
The infectiousness profile utilized in the model is obtained from a within-host model
for COVID-19 that was calibrated by measurements of viral load dynamics24.

The droplets exhaled by infected agents containing infectious viral particles are
coarsely divided into two components based on the size of droplets: small airborne
droplets (≤10 μm in diameter) and large droplets (>10 μm in diameter). The small
airborne droplets can suspend in the air for long periods of time due to the limited
influence of gravity57. As a result, airborne droplets are heavily influenced by the
ventilation rate of the zone and a high ventilation rate can effectively reduce the
transmission risk as will be discussed shortly. Since the small droplets spread over the
entire zone (depends on the volume of the zone), viruses within exhaled infected
agents can infect susceptible agents far away from infectors, and thus lead to long-
range infections. The large droplets fall quickly to the ground due to gravity and thus
spread only over a limited distance away from the infectious agent (typically <2m),
making only short-range infections possible. The ratio of infectious viral particles
between large droplets and airborne droplets f is adjusted to reproduce an observed
initial doubling time of unmitigated epidemic equal to 2.5 days. This doubling time is
motivated by observations of growth rate in COVID-19 cases in Chicago during
February/early March 2020. The value of f used in this study is equal to 3.

Viral quanta cumulated from either large or small droplets are denoted as
nshort-range(t) and nlong-range(t) respectively. Small droplets spread over a longer
distance and are eventually well-mixed over the zone modulated by the ventilation:

dnlong�range tð Þ
dt

þ rvent nlong�rangeðtÞ ¼
∑
i
Ei

V ; ð2Þ

where rvent is the ventilation rate, i loops over all infected agents, and V is the
volume of the zone.

Large droplets follow equations for short-range transmission dynamics
modulated by both ventilation and gravity:

dnshort�range tð Þ
dt

þ rgravity þ rvent
� �

nlocalðtÞ ¼
∑

i;<2m
f Ei

V local
; ð3Þ

where rgravity is the inverse of mean duration that large droplets stay in the air, i
loops over all infected agents within 2-m range of the susceptible, and Vshort-range is
the volume of a cylinder with radius 2 m and height 2 m. To simplify the
computation, nshort-range (t) is assumed to be in a steady state and thus

nshort�range tð Þ ¼
∑

i;<2m
f Ei

rgravity þ rvent
� �

V local

ð4Þ

The quanta emission rates for different agents in various zones are described in
Supplementary Table 8.

For each susceptible agent, the probability of being infected for each zone is
independent. The infection probability for one susceptible in a zone depends on the
accumulated quanta N and N is a time-integral of

n tð Þ ¼ nlong-range tð Þ þ nshort-range tð Þ: ð5Þ
The disease transmission dynamics in homes/dorm environments is hard to be

modeled for two reasons: (1) the unknown co-habitation information of agents and
(2) too many independent houses/homes/dorm rooms to be tracked. This causes
computational complexity. To consider the disease transmission due to
cohabitation at homes/dorms, all agents in the simulation are grouped into pairs
and they are roommates to each other. The disease transmission can happen
between two roommates and the probability is computed from the quanta emission
rate for breathing, the volume in typical dormitories, and the ventilation rate in
dorms. For each night, an infection event between one susceptible roommate and
the other infected roommate is probabilistic.

Schedules. Agents’ schedules are generated before running the simulation and are
motivated by real information about both undergraduate and graduate students’
class schedules of the semester Fall 2019 as provided by the University of Illinois at
Urbana-Champaign. A schedule comprises a list of zones and times that define
where an agent should be as a function of time. To adapt for the agent-based
model, the duration of classes is assumed to have a granularity of 30 min. Zones are
divided into groups according to their function, and may be associated with aca-
demic courses, libraries or study groups, cafes, restaurants, or bars/parties. Each
zone has a defined, static size and is associated with certain quanta emission rates

Fig. 6 Other communities with SHIELD. SHIELD was deployed at other locations inWinter 2020/Spring 2021. The results from four representative examples
are shown: a a university (1×/week), b a pair of high schools (2×/week), c a courthouse (2×/week), and d a large private corporate campus (2×/week).
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(see Supplementary Table 8), e.g., the emission of quanta is higher in bars than
classrooms since one is more likely to be talking in a bar. Besides the student
population, there are also non-student agents (1 professor for every class and 5
workers in every bar, restaurant, cafe, or library). These other agents are assumed
to stay at home for most of time except going to their working zones. There are
assumed to be 15,000 students living in 300 dormitories, while the remaining
students are divided into the other home zones. For simplicity, 300 dormitories are
assumed to be the same size, with 50 students living in each one. The total number
of non-student agents is 2446.

The disease transmission at home/dorm is assumed to be stochastic and it
occurs between randomly paired roommates with a constant probability that is
inferred from extended exposure overnight constrained by the typical volume and
the ventilation rate of dormitories.

Although our assignment of courses is based on a real schedule, we can only
synthesize the agents’ out-of-school schedules. We use the following model to fill in
the blanks:

● Agents are assumed to be home/dorm between 21h00 and 8h00.
● Agents do not skip classes.
● Agents eat at restaurants twice a day for lunch and dinner between

(10–14 h) and (17 and 21 h), respectively. An agent will spend a random
amount of time at the restaurant or dining home:

Lunch: uniform random between 0.5 and 1 h.
Dinner: uniform random between 0.5 to 2 h.

● Agents who stay at home/dorm, in the library, at a cafe, or go to bars tend
to stay a long time and the assumed time interval spent is given in
Supplementary Table 9.

● 7000 students would go to bars after 6 p.m., and agents who go to bars/
parties only do so on Thursdays and weekends. (Agents may stay overnight
in bars).

● On a daily basis:

2500 agents would go to cafes if they are free at the time.
11250 students would go to libraries or congregate in study groups if
they are free at the time.
5 out of 50 students living in each dormitory would go to a dorm party
each night for 2 h.

● Agents would stay at home/dorm for a while if they have nothing else to do
at the time.

To simulate the real-world campus, the schedule also added two groups of
specialized agents: professors/staff and workers. Each course section is assigned
with a course staff who would teach that section and stay at that class zone during
class time. Each non-class zone (except home/dorm zone and lab zone) would have
5 workers who would stay at their working zone from 8 a.m. to 9 p.m. Workers will
go for lunches and dinners as everyone else and this provides an opportunity for
mixing between students and non-student agents.

In addition to the above specified in-semester schedules of all agents, we have
also incorporated a pre-semester schedule that reflects student activities during
the move-in week before the start of the semester. This is crucial because some
agents may come to campus already infected and hence they will be detected by
testing during initial screening and may also be capable of infecting other
susceptible individuals while the mitigation strategies (such as mask-wearing
and hybrid classes) are not fully effective yet. We have summarized our
calculation for entry screening in an earlier report58. Given the prevalence of
COVID-19 in Illinois in August 2020, we estimated that approximately 300
infected agents will be detected in entry screening58. In the 3-day pre-semester
period, agents spend more time in restaurants, cafes, and bars. All agents are
required to receive a universal testing screening in the next 2 days upon campus
arrival.

Quarantine and isolation. Agents who are test positive will have their regular
schedules modified through mandatory isolation and thus will be disconnected
from the general population. Potentially exposed individuals are also identified
through contact tracing and may be disconnected from the general population
through mandatory quarantine. Thus, in our model, individuals may be dis-
connected from the population due to two reasons: (1) they have been confirmed as
infected by testing. We call them: isolated. Or (2) they have not been confirmed yet
but they might have been exposed to an infectious individual and are identified
through contact tracing. We call them quarantined.

In the real world, quarantine can happen for a variety of reasons including
either self-quarantine (e.g., following self-identification of symptoms) or as the
result of manual contact tracing or exposure notification (where someone is
directed to isolate because they have recently been in contact with an infected
individual). In our model, to consider the worst-case scenario, we ignore the case
of self-quarantine and attribute the quarantine to the manual contact tracing or
exposure notification following an index case (i.e. a positive case). Individuals
are quarantined following the manual contact tracing procedure from CDC and
exposure notification procedure specified in the Safer Illinois exposure
notification app utilized in UIUC. Individuals who are identified as close
contacts of an index by manual contact tracers are quarantined for 14 days. If
they show any symptoms during the 14-day quarantine period and are tested
positive, they will be switched to an isolation protocol. Besides, individuals may
be notified by the exposure notification app if their risk scores are larger than a
certain threshold. Those individuals notified by the app will be quarantined for
5 days before receiving a test.

Fig. 7 Other communities without SHIELD. a and b Relationship between
observed and predicted COVID-19 cases and mortality among counties
with large university enrollments (student enrollment > 15,000 at start of
Fall 2020 semester, n= 251). Predicted COVID-19 case and mortality rates
were analyzed with a 3-week lag (to adjust for delays between exposure
and outcome) using each county’s social vulnerability index (SVI) and age-
adjusted COVID-19 mortality, accounting for state (due to policy
differences in COVID-19 management). COVID-19 human case data63,64

and SVI were provided from CDC (2021) and population data was provided
from the U.S. Census Bureau (2019)64. The lines indicate the fit lines for
the linear regressions, with shaded areas indicating the 95% confidence
intervals around the fits and circles indicating observations with Champaign
County shown in orange and other Big 10 Conference Universities (n= 16*)
in black. *Hennepin and Ramsey Counties (MN) were both used for
University of Minnesota.
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Testing. The testing module enables agents to be checked for the disease and be
isolated from the general population if the testing procedure identifies them as
having been infected. Our implementation of testing makes several assumptions:

Testing is only available for part of the day (between 8 a.m. and 6 p.m.).
An infected agent may be incorrectly tested negative. For this modeling exercise,
the false negative rate was assumed to be 11.1% based on initial studies36. The
false negative rate is likely much lower: In the clinical study shown in Fig. 2c,
negative percent agreement for covidSHIELD assay with nasal swab-based assay
was 98.9% (95% CI, 93.9–99.9%).
The false positive rate of the test was assumed to be zero.
The delay between having been tested and receiving the results of the test is 5 h.
The testing results of all collected testing samples will be notified as soon as
possible without the working hour limit.

Contact tracing and exposure notification. We implement modules for both
manual contact tracing and automatic app-based exposure notification. The
manual contact tracing is performed by manual contact tracers. Once an index case
is identified by the test, the manual contact tracing starts to find the index’s close
contacts (i.e., contacts whose distance to the index is <2 m) staying more than
15 min with the index case. Given the fact that such a manual contact tracing
requires a large force of manual contact tracers and not every close contact cannot
be accurately identified, here we assume that only 50% of close contacts may be
successfully traced. Close contacts in classes are hard to be identified due to ran-
dom mixing that may happen between students. As a result, the whole class will be
moved online and all agents in this class are quarantined once an infected case is
diagnosed in this class.

The exposure notification (EN) function is modeled on the Privacy-Preserving
Contact Tracing procedure developed by Apple and Google. The Safer Illinois
version of this function, developed at UIUC, is a decentralized protocol that
combines a smart phone’s Bluetooth technology with privacy-preserving
cryptography. The app emits Rolling Proxy Identifiers, or keys, multiple times per
minute. These keys are randomly generated three or four times per hour. Keys are
exchanged among phones that come within 2 m for a minimum amount of time.
Keys that are emitted and keys that are sensed are stored locally on individual
phones. When the owner of a phone tests positive for SARS-CoV-2, an encrypted
notification is sent to a central server along with all of the keys that person’s phone
emitted during the past 3 days. These keys cannot reveal the identify of the person
who tested positive or the location where someone may have been exposed. The
encrypted keys of confirmed cases are automatically downloaded via the app by all
users and are compared to the saved keys on a person’s phone. Whenever there is a
match between the encrypted keys of confirmed cases and locally saved keys, the
risk score of the user is updated. If the total risk score of the user in the past 14 days
is larger than a threshold, the user is notified by the exposure notification system in
the Safer Illinois app.

We enhance the exposure notification through a risk-weighted approach. The
probability of being infected depends on three factors: infectiousness of the index,
contact duration, and the zone risk. Thus, the risk-weighted protocol is developed
here to reflect these factors in the risk score. The risk score is defined as contact
duration (in hours) with all index cases weighted by the infectiousness of all index
cases. The infectiousness is scaled to make the peak infectiousness as 1. Given the
probability of being infected in zones such as bars is much higher than the infection
probabilities in all other zones, the risk score in such risky zones is increased to
reflect the true process of disease transmission. To achieve this, all agents’ activities
during weekends’ and Thursdays’ nights will be treated as in bars and their risk
scores are multiplied by 10. The notification happens when the total risk score
passes 2.

Additional mitigation strategies. In addition to the testing, contact tracing, and
exposure notification, there are several extra mitigation strategies effective for
reducing the infection:

Hybrid classes: a fraction of classes (especially large classes) is moved online to
reduce the contact hours between students. In the model, all classes with the size
over 50 are moved online and all students are assumed to stay at home/dorm
when they are taking the online class.
Mask-wearing: masks can reduce both the emission rate and the inhaled rate of
viral quanta. In our model, the overall reduction coefficient for the mask-
wearing is assumed to be 50% when both the infector and infectee wear masks.
The mask efficiency in reducing emission is assumed to be 30%. The mask
efficiency in reducing inhalation is assumed to be 30%. These numbers are
conservatively assumed consistent with a single layer cloth mask. Thus, if either
the infector or the susceptible individuals does not wear a mask, the mask
reduction in transmission is only 30%. If both agents wear masks, the effect of
masking is quadratic and the transmission is reduced by (1–0.3)2= 0.49,
or ~50%.

Evaluating the multiplier, M, for testing frequency. We adopted the following
infectiousness profile, after Goyal et al. (2020)24, which includes 2-day latency

period of [0.0, 0.0, 0.148, 1.0, 0.823, 0.426, 0.202, 0.078, 0.042, 0.057, 0.009, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0]. The sum of this infectiousness list is therefore 2.785. The effect of
testing frequency on reducing the transmission chain may be estimated as follows:

A. Testing once a week:
With one test a week, agents may test positive and get isolated on days 3, 4,
5, 6, 7, 8 or 9 after exposure with a probability= 1/7. Therefore, the expected
sum of infectiousness profile modulated by 1 test a week is (1/7)*0.148+
(1/7)*(0.148+ 1.0)+ (1/7)*(0.148+ 1.0+0.823)+ (1/7)*(0.148+ 1.0+
0.823+ 0.426)+ (1/7) * (0.148+ 1.0+ 0.823+ 0.426+ 0.202)+ (1/7)
*(0.148+ 1.0+ 0.823+ 0.426+ 0.202+ 0.078)+ (1/7)*(0.148+ 1.0+
0.823+ 0.426+ 0.202+ 0.078+ 0.042)= 1.951. This generates a R0 multi-
plier= 1.951/2.785= 70.5%.

B. Testing two times a week:
With two tests a week, agents may test positive and get isolated on days 3, 4, or 5
after exposure with a probability= 2/7, while agents may test positive and get
isolated 5.5 days after exposure with a probability= 1/7. Therefore, the expected
sum of infectiousness profile modulated by 2 tests a week is (2/7)*0.148+ (2/7)
*(0.148+ 1.0)+ (2/7)*(0.148+ 1.0+ 0.823)+ (1/7)
*(0.148+ 1.0+ 0.823+ 0.426/2)= 1.245, generating a R0 multiplier= 1.245/
2.785= 44.7%.

Computation of R0 in the hybrid transmission model. In the hybrid transmission
model, the infection occurs through the accumulation of infectious quanta emitted
from all infectious agents present in the zone. In other words, the concept of
transmission pair is not clear and instead, each infectious agent has a fractional
contribution to an infection event. As a result, here we attempt to estimate R0 as a
sum of fractional contributions. First, for each infection event that occurred in the
simulation, we recorded the infection zone and time for this individual and
obtained all infectious agents within the zone at that time according to the schedule
and excluded all isolated agents. Second, for an infection event with n infectors, we
assigned a fractional R0 contribution 1/n for each infector. Finally, during the early
period of the epidemic, the fractional R0 for all infection events are assigned to all
infectious agents in presence, and R0 for each infected agent is a sum of all frac-
tional R0.

Estimating the effective reproduction number based on daily new cases on
campus. We computed the time-dependent effective reproduction number and
growth rate throughout the fall semester accounting for variability in testing fre-
quency and reporting delays (Fig. 4 in the main text). The calculations were done
using the package EpiNow2 which implements a range of open-source tools46, and
current best practices47.

In using the package, we have made the following assumptions:

● The all-time mean and median of test results reporting delays on campus
are 9.29 and 8.34 h, respectively. These are much shorter than the typical
reporting delays in testing of the general public (48–72 h).

● Under-reporting is neglected. The test uptake on campus was near
universal. Everybody was required to test and those who did not comply
was subject to disciplinary action. Therefore, we were detecting, in
principle, all the cases and the undetected cases, if any, were negligible.

● The time between two consecutive tests was approximately distributed
according to the data shown in Supplementary Fig. 7 with the mean and
standard deviation equal to 4.14 and 3.4 days, respectively.

● The generation time is assumed to be gamma distributed consistent with
the data from Ganyani et al. (2020)59.

Acquisition and processing of clinical samples. All clinical samples from study
participants were collected in accordance with Western IRB-approved protocol
number 20203538. Participants were recruited from populations seeking SARS-
CoV-2 tests and were included if they (1) reported symptoms consistent with
COVID-19 or suspected exposure to an infected individual, (2) had never tested
positive for SARS-CoV-2, (3) were at least 18 years of age, and (4) spoke English.
All participants provided informed consent at the time of recruitment. Analysis of
aggregate data from campus was ruled exempt by the University of Illinois Urbana-
Champaign Institutional Review Board, protocol number 21,216. Participants
provided a 2 mL saliva sample, and a health professional collected a nasophar-
yngeal swab following standard procedures. The saliva sample was transported to
the Veterinary Diagnostic Laboratory within 24 h for analysis following the out-
lined procedure. The nasopharyngeal swab was inserted into viral transport media
and stored at −80 °C until analysis with an FDA-approved comparator at an
independent diagnostic laboratory.

Supplementary Table 5 summarizes the method comparison study completed to
support the correlation between saliva samples processed with covidSHIELD and
nasal samples processed with Abbott RealTime SARS-CoV-2 assay performed on
the Abbott m2000 System. Supplementary Table 6 outlines the details to capture on
case report form. Supplementary Table 1 summarizes the 25 clinical samples were
split into two aliquots upon receipt, one set was processed using our covidSHIELD
assay and the other set was subjected to RNA extraction using MagMax Viral/
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Pathogen II (MVP II) Nucleic Acid Isolation Kit (ThermoFisher CN A48383). 5uL
of either processed saliva (in 1:1 2× TBE/Tween-20 buffer) or purified RNA (in
water) were subsequently used as templates for RT-qPCR. Supplementary Table 7
summarizes the comparative study of mid-turbinate (MT) swab and saliva from 17
individuals identified with low viral load based on MT swab analyzed using Abbott
Alinity RT-PCR at the Johns Hopkins University School of Medicine.
Contemporaneously collected saliva samples from the same individuals were
analyzed using the covidSHIELD assay at the University of Illinois Urbana-
Champaign CLIA-registered laboratory.

SARS-CoV-2 inactivated virus. In most experiments, fresh pooled saliva were
spiked with gamma-irradiated (BEI cat# NR-52287, Lot no. 70033322) SARS-CoV-
2 virions. SARS-Related Coronavirus 2, Isolate USA-WA1/2020, Gamma-irra-
diated, NR-52287 was deposited by the Centers for Disease Control and Prevention
and obtained through BEI Resources, NIAID, NIH. The reported genome copy
number pre-inactivation for γ-irradiated SARS-CoV-2 is 1.7 × 109 genome
equivalents/mL for the specified lot number. All virus stocks were aliquoted in
small volumes and stored at −80 °C. Stocks were serially diluted to the correct
concentration in RNase-free water on the day of experimentation.

Collection and processing of fresh saliva from healthy donors for Limit of
Detection (LoD) assay. Fresh saliva was collected from healthy individuals in
50 mL conical tubes (BD Falcon/Corning 352098) in accordance with University of
Illinois at Urbana-Champaign IBC-approved protocol numbers 4604 and 4589.
Known amounts of the SARS-CoV-2 inactivated virus (BEI cat# NR-52287) were
spiked into saliva samples. Samples were processed according to the covidSHIELD
instructions for use (https://www.fda.gov/media/146317/download). Briefly, sam-
ples were incubated in a hot water bath at 95 °C for 30 min. After cooling the
sample on ice, 100 μL saliva was transferred to 96-deep-well plates pre-loaded with
100 μL of 2× TBE (ThermoFisher CN AM9863)+ 1% Tween-20 (ThermoFisher
CN AM9863) buffer at 1:1 dilution ratio. 5 μL of this sample preparation was used
as template for RT-qPCR reactions.

We performed a multiplex RT-qPCR assay using the TaqPath RT-PCR
COVID-19 kit (ThermoFisher CN A47814) together with the TaqPath 1-step
master mix—No ROX (Thermo Fisher CN A28523). All RT-qPCR reactions,
comprised of 5 μL template+ 5 μL of reaction mix (2.5 μL TaqPath 1-step master
mix, 0.5 μL TaqPath primer/probe mix, 1.0 μL MS2, and 1.0 rnase-free water), were
performed in 384-well reaction plates in a QuantStudio 7 system (Applied
Biosciences). The RT-qPCR was run using the standard mode, consisting of a hold
stage at 25 °C for 2 min, 53 °C for 10 min, and 95 °C for 2 min, followed by 40
cycles of a PCR stage at 95 °C for 3 s then 60 °C for 30 s; with a 1.6 °C/s ramp up
and ramp down rate. The limit of detection (LoD) of the assay was performed by
serial dilution of γ-irradiated SARS-CoV-2 (0–5.0 × 105 viral copies/mL) used to
spike pooled fresh saliva samples. LoD experiments were repeatedly performed at
least five times in different machines.

In some experiments, the CDC-approved assay was used to validate our data using
the TaqPath 1-step mix (ThermoFisher CN A15300). Primers and probes targeting the
N1, N2, and Rnase P (RP) genes were purchased from Integrated DNA Technologies as
listed: nCOV_N1 Forward Primer Aliquot (CN 10006830), nCOV_N1 Reverse Primer
Aliquot (CN 10006831), nCOV_N1 Probe Aliquot (CN 10006832), nCOV_N2
Forward Primer Aliquot (CN 10006833), nCOV_N2 Reverse Primer Aliquot (CN
10006834), nCOV_N2 Probe Aliquot (CN 10006835), RNase P Forward Primer Aliquot
(CN 10006836), RNase P Reverse Primer Aliquot (CN 10006837), RNase P Probe
Aliquot (CN 10006838). The 2019-nCoV_N_Positive Control (IDT CN 10006625) was
used as positive control at 50 copies/μL dilution. LoD experiments using CDC primers
were performed at least three times.

RT-qPCR data analysis. Following completion of RT-qPCR, data were processed
using QuantStudio Design and Analysis Software (version 2.4.3) with a threshold
setting of 10,000 and a baseline setting of 5. Cycle threshold (Ct) cut-off was set at
39. Ct values were plotted as single replicate values on a scatter plot, using
GraphPad Prism 9 (version 9.3.1).

SHIELD deployment in other communities. Saliva samples were collected from a
large public university, a pair of high schools, a federal courthouse, and a large
private corporate campus. Samples were processed and analyzed using the covid-
SHIELD assay (FDA EUA 202555). The test results were evaluated according to the
interpretation tables in the EUA Summary (https://www.fda.gov/media/146317/
download). The weekly averaged positivity rates are plotted against the period the
samples were processed.

Development of Safer Illinois app. Prior to the COVID-19 pandemic, a large
collaborative effort led by the Safe, Healthy Community Initiative on campus had
been developing an open source software platform called Rokwire60. Rokwire is
designed to make it easy for individuals and organizations to build apps for mobile
devices that support smarter, healthier communities. We had been using the
University of Illinois at Urbana-Champaign campus as a test bed for the devel-
opment of Rokwire—the platform—and the first app built upon it—the Illinois

app. Safer Illinois was built on the Rokwire platform and the source code was made
open source August 14, 202061.

As part of the process of designing Safer Illinois, we met with and sought feedback
from a diverse set of stakeholders: faculty and students, mental health advocates,
leadership in Student Affairs, the Faculty Senate, the Graduate Employees
Organization, and a range of individuals with expertise in digital privacy. Collectively,
these groups expressed a variety of concerns related to privacy and data security.

We took multiple actions to address the concerns expressed. We built privacy
into Safer Illinois from the ground up. We made modifications to a beta version of
the app to minimize the data we collected and stored so that collected only the data
necessary to allow the app to function. We designed the app to store data related to
Exposure Notification for the shortest possible period and then delete it. We
ensured that users could delete their data at any time from both the app and
servers. We made our privacy notice novice friendly, so that all consent language
allowed users to understand up front exactly what data we collect, what we do with
that data, how long we keep it, and how users can manage their data61.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Aggregate case and testing data are publicly available at https://go.illinois.edu/
COVIDTestingData. Analysis of aggregate data from campus was ruled exempt by the
University of Illinois Urbana-Champaign Institutional Review Board, protocol number
21216. All other data may be requested through the COVID Research Oversight
Committee at https://redcap.link/crocdatasamples. Link to the code for analysis of
county-level mortality in the BigTen: https://github.com/juel15401/
Big10UniversityCounties_COVID.git. https://doi.org/10.5281/zenodo.6481689

Code availability
Source code repository of “Safer Illinois” App - the official COVID-19 app of the
University of Illinois: https://github.com/rokwire/safer-illinois-app61. https://doi.org/10.
5281/zenodo.6493203
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